Characterization of complexation of poly (N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate) thermoresponsive cationic nanogels with salmon sperm DNA

نویسندگان

  • Jim Moselhy
  • Tasnim Vira
  • Fei-Fei Liu
  • Xiao Yu Wu
چکیده

Thermoresponsive cationic nanogel (TCNG) networks based on N-isopropylacrylamide (NIPAM), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and quaternary alkyl ammonium halide salts of DMAEMA (DMAEMAQ) were synthesized by dispersion polymerization technique. The thermoresponsive properties of TCNGs and TCNG-salmon sperm DNA (sasDNA) polyplexes were characterized in aqueous media of various pH and ionic strength. P[NIPAM] and P[NIPAM/DMAEMA] TCNGs exhibited sharp volume phase transition (VPT) in water at critical temperatures (T(c)) of 32 degrees C and 36 degrees C, respectively. Quaternized P[NIPAM/DMAEMAQ] TCNGs did not undergo sharp VPT up to 50 degrees C. The VPT of uncomplexed TCNGs were sensitive to the ionic composition and ionic strength of salts in solution, but were insensitive to pH in the range 5.0 to 7.4. The VPT of P[NIPAM/DMAEMAQ]/sasDNA diminished in magnitude with increasing W(p)/W(d) suggesting greater compaction of the polyplexes. The distinct phase-transition properties of P[NIPAM/DMAEMA]/sasDNA and P[NIPAM/DMAEMAQ]/sasDNA polyplexes were attributed to the condensing capability of polycations and to differences in the spatial distribution of structural charges in quaternized and nonquaternized networks. The findings demonstrate that stable TCNGs can be prepared with controllable responsive properties determined by the nature of the cationic charge incorporated and may have potential as vehicles for DNA delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-stage collapse of unimolecular micelles with double thermoresponsive coronas.

Phase transition behavior of unimolecular dendritic three-layer nanostructures with dual thermoresponsive coronas is studied. Successive reversible addition-fragmentation transfer (RAFT) polymerizations of N-isopropylacrylamide (NIPAM) and 2-(dimethylamino)ethyl methacrylate (DMA) were conducted using fractionated fourth-generation hyperbranched polyester (Bolton H40) based macroRAFT agent. At ...

متن کامل

Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability.

A double hydrophilic ABC triblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(N-isopropylacrylamide) (PDEA-b-PDMA-b-PNIPAM), containing the well-known pH-responsive PDEA block and thermoresponsive PNIPAM block, was synthesized by atom transfer radical polymerization via sequential monomer addition using ethyl 2-chloropropionate as the i...

متن کامل

Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes.

Novel nanogels that possess the capacity to change their physico-chemical properties in response to external stimuli are promising drug-delivery candidates for the treatment of severe skin diseases. As thermoresponsive nanogels (tNGs) are capable of enhancing penetration through biological barriers such as the stratum corneum and are taken up by keratinocytes of human skin, potential adverse co...

متن کامل

Synthesis and Properties of Novel Cationic, Temperature-Sensitive Block-Copolymers

Facile, one-step synthesis of self-assembling, cationic block copolymers of poly(2-N-(dimethylaminoethyl) methacrylate) (pDMAEMA) and PEO-PPO-PEO (Pluronic®) is developed. The copolymers are obtained via free-radical polymerization of DMAEMA initiated by Pluronic-radicals generated by cerium (IV). The copolymers possess surface activity, are polycationic at pH<7.1, and self-assemble into micell...

متن کامل

3D Scaffold Designing based on Conductive/Degradable Tetrapolymeric Nanofibers of PHEMA-co-PNIPAAm-co-PCL/PANI for Bone Tissue Engineering

The hydrophilic, conducting, biocompatible and porous scaffolds were designed using poly(2-hydroxy ethyl methacrylate)-co-poly(N-isopropylacrylamide)-co-poly(ε-caprolactone) (P(HEMA-b-NIPAAm-b-CL))/polyaniline (PANI) for the osteoblast applications. To this end, the PHEMA and P(HEMA-b-NIPAAm) were synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization, and in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009